Other things on this site...

Evolutionary sound
Listen to Flat Four Internet Radio
Learn about
The Molecules of HIV
Make Oddmusic!
Make oddmusic!

Sneak preview: papers in special sessions on bioacoustics and machine listening

This season, I'm lead organiser for two special conference sessions on machine listening for bird/animal sound: EUSIPCO 2017 in Kos, Greece, and IBAC 2017 in Haridwar, India. I'm very happy to see the diverse selection of work that has been accepted for presentation - the diversity of the research itself, yes, but also the diversity of research groups and countries from which the work comes.

The official programmes haven't been announced yet, but as a sneak preview here are the titles of the accepted submissions, so you can see just how lively this research area has become!

Accepted talks for IBAC 2017 session on "Machine Learning Methods in Bioacoustics":

A two-step bird species classification approach using silence durations in song bouts

Automated Assessment of Bird Vocalisation Activity

Deep convolutional networks for avian flight call detection

Estimating animal acoustic diversity in tropical environments using unsupervised multiresolution analysis

JSI sound: a machine-learning tool in Orange for classification of diverse biosounds

Prospecting individual discrimination of maned wolves’ barks using wavelets

Accepted papers for EUSIPCO 2017 session on "Bird Audio Signal Processing":

(This session is co-organised with Yiannis Stylianou and Herve Glotin)

Stacked Convolutional and Recurrent Neural Networks for Bird Audio Detection preprint

Densely Connected CNNs for Bird Audio Detection preprint

Classification of Bird Song Syllables Using Wigner-Ville Ambiguity Function Cross-Terms

Convolutional Recurrent Neural Networks for Bird Audio Detection preprint

Joint Detection and Classification Convolutional Neural Network (JDC-CNN) on Weakly Labelled Bird Audio Data (BAD)

Rapid Bird Activity Detection Using Probabilistic Sequence Kernels

Automatic Frequency Feature Extraction for Bird Species Delimitation

Two Convolutional Neural Networks for Bird Detection in Audio Signals

Masked Non-negative Matrix Factorization for Bird Detection Using Weakly Labelled Data

Archetypal Analysis Based Sparse Convex Sequence Kernel for Bird Activity Detection

Automatic Detection of Bird Species from Audio Field Recordings Using HMM-based Modelling of Frequency Tracks

Please note: this is a PREVIEW - sometimes papers get withdrawn or plans change, so these lists should be considered provisional for now.

| science | Permalink